Single Variable Data Anayisis

9G Mean, median and mode

The discipline of statistics involves
$1]$ collecting and summarising data. It also involves drawing conclusions and making predictions, which is why many of the decisions we make today are based on statistical analysis. The type and amount of product stocked on supermarket shelves, for example, is determined by the sales statistics and other measures such as average cost and price range.

- The two most commondy weed measures of loction are the mean and the median. These are aso called 'measures of fentri' or' 'measures of central tendency'. Men and median can only be applied to numerical data.
- The mean is sometimes called the 'arithmetic mean' or the 'average'. The formula used for calculating the mean, \bar{x}, is:

$$
\bar{x}=\frac{\text { sum of data values }}{\text { number of data values }}
$$

For example, in the following data set

5	7	2	5	1

the mean is $\frac{5+7+2+5+1}{5}=20 \div 5=4$

- The median divides an ordered data set into two sets, each of which contain the same number of data values. It is often called the 'middle value'. The median is found by firstly ensuring the data values are in ascending order, then selecting the 'middle' value.

If the number of values is odd, simply choose the one in the middle.

$$
\begin{array}{llllll}
2 & 2 & 3 & 4 & 6 & 9
\end{array} 9
$$

If the number of values is even, find the average of the two in the middle.
$\begin{array}{llllllll}2 & 2 & 3 & 4 & 7 & 9 & 9 & 9\end{array}$
Median $=(4+7) \div 2=5.5$

The Mode

- The mode is the number with more occurrences in a data set or the number with the higher frequency.
- For example, in the following set of numbers: 252631 , the Mode will be 2 because it is the number that occurs the most in this particular set of numbers
- In this example: $2,1,4,1,5,4$. There is two modes 1 and 4 with 2 occurrences each.
- In this example 2418910 . There is no mode because all scores have the same number of occurrences.

Example 11 Finding measures of centre

For the given data sets, find:
i the mean
ii the median
iii the mode
a $\begin{array}{llllllllll}5 & 2 & 4 & 10 & 6 & 1 & 2 & 9 & 6\end{array}$
b $\begin{array}{llllll}17 & 13 & 26 & 15 & 9 & 10\end{array}$

$$
\begin{aligned}
& \text { SOLUTION } \\
& \text { a } \quad \text { i Mean }=\frac{5+2+4+10+6+1+2+9+6}{9} \\
& =5 \\
& \text { ii } \begin{array}{llllllll}
1 & 2 & 2 & 4 & (5) & 6 & 6 & 9
\end{array} 10 \\
& \text { Median }=5 \\
& \text { iii } \text { Mode }=2 \text { and } 6
\end{aligned}
$$

EXPLANATION

Find the sum of all the numbers and divide by the number of values.

First, order the data. The median is the middle value.

The data set is bimodal since there are two numbers with the highest frequency.

3 For the given data sets, find the:

| i | mean | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | 7 | 2 | 3 | 8 | 5 | 9 | 8 | | | |
| c | 12 | 9 | 2 | 5 | 8 | 7 | 2 | 3 | | |
| e | 3.5 | 2.1 | 4.0 | 8.3 | 2.1 | | | | | |
| g | 6 | 0 | -3 | 8 | 2 | -3 | 9 | 5 | | |

ii median

| | iii mode | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b | 6 | 13 | 5 | 4 | 16 | 10 | 3 | 5 | 10 | |
| d | 10 | 17 | 5 | 16 | 4 | 14 | | | | |
| f | 0.7 | 3 | 2.9 | 10.4 | 6 | 7.2 | 1.3 | 8.5 | | |
| h | 3 | -7 | 2 | 3 | -2 | -3 | 4 | | | |

4 These data sets include an outlier. Write down the outlier, then calculate the mean and the median. Include the outlier in your calculations.

```
a 5 7 7 8 12 33
b 
c -58 -60 -59 -4 -64
```

5 Decide if the following data sets are bimodal.
a 279562874
$\begin{array}{llllllllll}\text { c } & 10 & 15 & 12 & 11 & 18 & 13 & 9 & 16 & 17\end{array}$
b $\begin{array}{llllllllll}1 & 6 & 2 & 3 & 3 & 1 & 5 & 4 & 1 & 9\end{array}$
d $\begin{array}{llllllll}23 & 25 & 26 & 23 & 19 & 24 & 28 & 26\end{array} 27$

Range

Tha range of a set of data is the difference between the highest and the lowest scors of the set.

Example 1) Find the range of 14, 21, 9, 32, 27, 15, 12, 30
Step 1) Put the data into an ordered list.
This gives us: $9,12,14,15,21,27,30,32$
Step 2) Check the number of data points in both lists is the same.
Both lists have 8 data points.
Step 3) The range is the difference or gap between the largest and smallest numbers.
Answer: the range is $32-9=23$.

Find the range in each of the sets of data below by ordering the numbers and then finding the difference between the highest and lowest.

Data		Ordered list	Range
1$)$	$45,23,17,20,27,11$	$11,17,20,23,27,45$	$45-11=34$
2$)$	$6,23,12,19,2,7$		
3$)$	$19,26,23,35,29,21$		
4$)$	$5,2,0,8,11,16,10$		
5$)$	$62,78,56,61,59,83$		
6$)$	$73,87,65,92,89,91$		
7$)$	$18,6,23,2,15,21,7$		

Lesson 2.
 Stem and Leaf Plots

Stem-and-leaf plots (or stem plots) are commonly used to display a single data set or two related data sets. They help to show how the data is distributed like a histogram but retain all the individual data elements so no detail is lost. The median and mode can be easily read from a stem-and-leaf plot because all the data sits in order.
https://www.youtube.com/watch?v=MUCvUgGfzdo

Exhinpla 13 Constructing and using a stem-and-leaf pliot

Consider the followwing set of data													
Qu3	2.5	4-1	3.7	2.0	3.3	4.8	3	4.6	O. 11	4.1	75	1.4	2.4
5.7	2.3	3.4	3.0	2.3	4.11	5.3	1.0	5.8	4	0.1	6-5	5.2	1.0

ai Organise the dita into an wonderedilstem-anod-leaf plot.
b Firnd the median
c. Find the movede
d Describe the data as symmentrical or skewed

SDLUTIDN

a

b Mediarn $=\frac{3.3+3.4}{2}$ $=3.35^{2}$

C Mowle is 4 .
d Data is apporoximately symmetrical.

EXPIIANATION

The mimimum is 0.1 and the maximum is 7.5 so sterns range from 0 to 7 . \mathbb{P} lace leaves in worler from srmallest to largest. Since some numbers appear morne than wonce. e. O- O. 1 . their lleaf fll appears the same number offirmes

There are 28 data wallues. The median is the averange of the two mivildle wallues (the 14 th andil $1501 h$ wallues).

The most common walue is 4.1
The distribution wif numbers is apporaximetely symmetrical albout the stem comtaining the nnedian.
https://www.youtube.com/watch?v=pfujiA5Mk_U

3 For each of the following data sets:
ii organise the data into an ordered stem-and-leaf plot
ii find the median
iiii find the mode
iv describe the data as symmetrical or skewed

a	41	33	28	24	19	32	54	35	26	28	19	23	32	26	28
b	31	33	23	35	15	23	48	50	35	42	45	15	21	45	
	51	31	34	23	42	50	26	30	45	37	39				
c	34.5	34.9	33.7	34.5	35.8	33.8	34.3	35.2	37.0	34.7					
	35.2	34.4	35.5	36.5	36.1	33.3	35.4	32.0	36.3	34.8					
d	167	159	159	193	161	164	167	157	158	175	177	185			
	177	202	185	187	159	189	167	159	173	198	200				

4 The number of vacant rooms in a motel each week over a 20 -week period is shown below.

12	8	11	10	21	12	6	11	12	16	14	22	5	15	20	6	17	8	14	9

a Draw a stem-and-leaf plot of this data.
b In how many weeks were there fewer than 12 vacant rooms?
c Find the median number of vacant rooms.

Example 14 Constructing back-to-back stem-and-leaf plots

A shop owner has two jeans shops. The daily sales in each shop over a 16 -day period are monitored and recorded as follows.

Shop A.														
$3 \quad 12$	12	13	14	14	15	15	21	22	24	24	24	26	27	28
Shop B:														
46	6	7	7	8	9	9	10	12	13	14	14	16	17	27
Draw a back-to-lback stem-and-leaf plot with an intervall wf 10 . Compare and comment on differences between the salles made by the two shops.														

SIDLUTIIN

a

ShopA		Shop 1 日
3	0	46677899
5544322	1	0234467
B7644421	2	7

$1 \mid 3$ means 13
b Shopp A has the highest number of daily sales. Its sales are penerally between 12 and 28 , with one day of wery low sales of 3 . Shop B salles are generally between 4 and 17 with only one high salle day of 27 .

EXPLANATION

The data for each shop is already ordered. Stenns are in intervals of 10 . Recond leaf digits for Shop A on the left and for Shop 18 on the right.

Look at lwoth sides of the plot for the similarities and differences.
https://www.youtube.com/watch?v=_84JyTh7tZo

5 For each of the following sets of data:
i draw a back-to-back stem-and-leaf plot
ii compare and comment on the difference between the two data sets
a Set A: 46

$\begin{array}{llllllllllllllll}\text { b Set A: } 1 & 43 & 24 & 26 & 48 & 50 & 2 & 2 & 36 & 11 & 16 & 37 & 41 & 3 & 36\end{array}$ $\begin{array}{lllllllllllllll}6 & 8 & 9 & 10 & 17 & 22 & 10 & 11 & 17 & 29 & 30 & 35 & 4 & 23 & 23\end{array}$
$\begin{array}{lllllllllllllllll}\text { Set } B: 9 & 18 & 19 & 19 & 20 & 21 & 23 & 24 & 27 & 28 & 31 & 37 & 37 & 38 & 39 & 39 & 39\end{array}$ $\begin{array}{lllllllllllllllll}40 & 41 & 41 & 43 & 44 & 44 & 45 & 47 & 50 & 50 & 51 & 53 & 53 & 54 & 54 & 55 & 56\end{array}$
$\begin{array}{lllllllllllllll}\text { c Set A: }: 0.7 & 0.8 & 1.4 & 8.8 & 9.1 & 2.6 & 3.2 & 0.3 & 1.7 & 1.9 & 2.5 & 4.1 & 4.3 & 3.3 & 3.4\end{array}$ $\begin{array}{lllllllllllllll}3.6 & 3.9 & 3.9 & 4.7 & 1.6 & 0.4 & 5.3 & 5.7 & 2.1 & 2.3 & 1.9 & 5.2 & 6.1 & 6.2 & 8.3\end{array}$
$\begin{array}{lllllllllllllll}\text { Set } \mathbb{B}: 0.1 & 0.9 & 0.6 & 1.3 & 0.9 & 0.1 & 0.3 & 2.5 & 0.6 & 3.4 & 4.8 & 5.2 & 8.8 & 4.7 & 5.3\end{array}$ $\begin{array}{lllllllllllllll}2.6 & 1.5 & 1.8 & 3.9 & 1.9 & 0.1 & 0.2 & 1.2 & 3.3 & 2.1 & 4.3 & 5.7 & 6.1 & 6.2 & 8.3\end{array}$

Lesson 3

9J Measures of spread: range and interquartile range

The mean, median and mode are three numbers that help define the centre of a data set; however, it is also important to describe the spread. Two teams of swimmers from different countries, for example, might have similar mean race times but the spread of race times for each team could be very different.

Example 16 Finding the range and quartiles for an odd number of data values

The following data values are the results for a school mathematics test.
$\begin{array}{lllllllllllll}67 & 96 & 62 & 85 & 73 & 56 & 79 & 19 & 76 & 23 & 68 & 89 & 81\end{array}$
a List the data in order, from smallest to largest.
b Find the range.
c Find the:
i median $\left(Q_{2}\right) \quad$ ii lower quartile $\left(Q_{1}\right)$
iii upper quartile $\left(Q_{3}\right)$ iv interquartile range (IQR)

```
SOLUTION
```



```
b Range = 96-19
    = 77
c i }\mp@subsup{Q}{2}{}=7
ii }\mp@subsup{Q}{1}{}=\frac{56+62}{2}=5
iii }\mp@subsup{Q}{3}{}=\frac{81+85}{2}=8
iv IQR = 83-59=24
iv \(\mathrm{IQR}=83-59=24\)
```


EXPLANATION

Order the data.

Range $=$ maximumvalue - minimumvalue
The median is 73 . Since there is an odd number of values, exclude the number 73 before finding Q_{1} and Q_{3}. Q_{1} (the middle value of the lower half) is halfway between 56 and 62 .
Q_{3} (the middle value of the upper half) is halfway between 81 and 85 .

3 For each of the following sets of data:
i list the set of data in order, from smallest to largest
ii find the range
iii find the median $\left(\mathrm{Q}_{2}\right)$
iv find the lower quartile $\left(\mathrm{Q}_{1}\right)$
v find the upper quartile $\left(Q_{3}\right)$
vi find the interquartile range (IQR)
a 57362197119085
b $38 \quad 362118274129353730302126$
c 180316197176346219183253228
d 256163285208542336764437871234376328
e $\begin{array}{lllllllllllllllllllllll}1.8 & 1.9 & 1.3 & 1.2 & 2.1 & 1.2 & 0.9 & 1.7 & 0.8\end{array}$
f $1035 \quad 0.1 \quad 2.3 \quad 23 \quad 12 \quad 0.02$

Example 17 Finding quartiles for an even number of data values

Here is a set of measurements, collected by measuring the lengths, in metres, of 10 long-jump attempts.
$\begin{array}{lllllllllll}6.7 & 9.2 & 8.3 & 5.1 & 7.9 & 8.4 & 9.0 & 8.2 & 8.8 & 7.1\end{array}$
a List the data in order, from smallest to largest.
b Find the range.
c Find the:
$\begin{array}{ll}\text { i median }\left(Q_{2}\right) & \text { ii lower quartile }\left(Q_{1}\right) \\ \text { iii upper quartile }\left(Q_{3}\right) & \text { iv interquartile range (IQR) }\end{array}$
d Interpret the IQR.

SOLUTION

b Range $=9.2-5.1 \quad$ Range $=$ highest value - lowest value
c i $Q_{2}=\frac{8.2+8.3}{} \quad Q_{2}$ is halfway between 8.2 and 8.3
Ii $=8.25 \mathrm{~m} \quad$ The middlle value of the lower half is 7.1
ii $Q_{1}=7.1 \mathrm{~m}$
iii $Q_{3}=8.8 \mathrm{~m}$
iv $\mathrm{IQR}=8.8-7.1$
$=1.7 \mathrm{~m}$
d The middle 50% of jumps differed by less than 1.7 m .

EXPLANATION

Order the data to locate Q_{1}, Q_{2} and Q_{3}. The middlle value of the upper half is 8.8 $I Q R$ is the difference between Q_{1} and Q_{3}

The IQR is the range of the middle 50% of the data.

4 The running time, in minutes, of 16 movies at the cinema were as follows:

a Find the range.
b Find the:
i median $\left(Q_{2}\right)$
ii lower quartile $\left(Q_{1}\right)$
iiii upper quartile $\left(Q_{3}\right)$
iv interquartile range (IQR)

- Interpret the IQR.

Lesson 4

9K Box plots

A box plot is a comnmonly used graph for a data set showiing the maximmumi and miinimunni values, the median and the upper and lower quartilles. Box plots are often used to show how a data set is distributed And how two sets compare. Box plots are used, for example, to compane a school's examination performnance apainst the performnance qf all schools in a state "They are also used to show medical test results buefore and affer treatment.
https://www.youtube.com/watch?v=fJZv9YeQ-qQ

Example 18 Intarpreting hax plot

This hoor plot summarioses the price of all the books in a book shop-

a Silete the minimum and maximurm bonk: prices.
(1) Find the inanpe of the hook primes.
c) State the mestian bowie price
d Find the interguartile range.
e Fifty per ment of the books are priced below whet wnountr
1 Twenty fiwe per cent of the books are priced abowe what mmount?
9 If thene were llowi books in the stare, haw many moulld be priced belkow 315%

SDLUTIDM

a Minimum bowk price - 45 Maximum twalk price - 350

1 Range $-550-35$
c Median Eook price - $\$ 20$
d Inienguartile range - $435-315$ - 420

420
$1 \quad 475$
(0.25 3 1000 - 250 250 thocics would he hellow $\$ 15$

EXPILAMATIIW

Rnnpe - mavimumprice - minimum paice

The maxtimn is Q $_{1}$
Interquartile ranpe $-0,0$

505 of bowles wre below gI_{1}
The tup 25\% of books are nbowe My.
2554 of bowles are priced helaw 315

4 This box plot summarises the length of babies born in a particular week in a hospital.

a State the minimum and maximum baby lengthe.
b Find the range of the length of the bahies.
c State the median baly length.
d Find the interquartile range.
e Fifly per went of the haby lengthe are below what amouni?
1 Twenty-five per cent of the babies are born llonger than what amount?
g If there were 80 baties born in the woek, horw many would be expected to the less than 45 cm in length?
5 This boo plot summarises the number of rabbits spothed per day in a pablock aver a 100 -day period.

a State the minimum and maximum number of rabbits spotled.
b Find the range of the nurnber of mbite spotted.
c State the median number of rabbits spotied.
d Find the interquartile range.
a Seventy-five per cent of the days the mumber of rabbite spolted is below what amount?
1 Fifty per went of the days the number of rabbits spouted is more than what amount?
g How many days was the number of spodisd rabbite less than 110

Lesson 5

Extimple 1! Constructing a hox plot

Consider the following set of data representing 11 sones resulting from nalling two dice and adding their moores.

$$
7107128965548
$$

a Find thes
I minimum value
II maximum value
III medinn
IV lower quartile

- upperquartile
(b) Draw a hoox plot to represent the duta.

```
SOLUTIIDM
```


EXPLAMATION

a D D
$45(6) 6(7) 8$ 8(9)10 12
1 Minvalue -4
II Mac.value - 12
III $Q_{1}-7$
lv $Q_{1}-6$
- $D_{3}-9$
b How plot Ralling two dice

Onder the data.
Determine the minimum and masimum value
The median is the middle value.
Disregard the middle value, then locwte the
lowerquartile and upper quartile.
Draw ascaled horimontal nxis
Mace the box plot above the mxis marking in the five key statistics from part 3.

6 For each of the sets of data below:
i state the minimum value
ii state the maximum value
iii find the median $\left(\mathrm{Q}_{2}\right)$
iv find the lower quartile $\left(\mathrm{Q}_{1}\right)$
v find the upper quartile $\left(Q_{3}\right)$
vi draw a box plot to represent the data
a 223346777888891111131313
b $\quad 43 \quad 21654534424028 \quad 56501043703761548819$
c 435353643244674364249933523255734
$\begin{array}{lllllllllllllllllll}\text { d } & 0.5 & 0.7 & 0.1 & 0.2 & 0.9 & 0.5 & 1.0 & 0.6 & 0.3 & 0.4 & 0.8 & 1.1 & 1.2 & 0.8 & 1.3 & 0.4 & 0.5\end{array}$

7 The following set of data describes the number of cars parked in a street on 18 given days. $\begin{array}{llllllllllllllll}14 & 26 & 39 & 46 & 13 & 30 & 5 & 46 & 37 & 26 & 39 & 8 & 8 & 9 & 17 & 48 \\ 29 & 27\end{array}$
a Represent the data as a box plot.
b On what percentage of days were the number of cars parked on the street between:
i 5 and 48?
ii 13 and 39?
iii 5 and 39?
iv 39 and 48 ?

8 The weights of two samples of adult leopards from Africa and Asia are summarised in these box plots.

a Which leopard population sample has the highest minimum weight?
b What is the difference between the ranges for both population samples?
c Is the IQR the same for both leopard samples? If so, what is it?
d What percentage of leopards have a weight less than 80 kg for:
i African leopards?
ii Asian leopards?
e A leopard has a weight of 90 kg . Is it likely to be an Asian or African leopard?

Lesson 6

9 The time that it takes for a sample of computers to start up is summarised in these box plots.

a What type of computer has the lowest median?
b What percentage of Mac computers loaded in less than 1 minute?
What percentage of PC computers took longer than 55 seconds to load?
d What do you notice about the range for Mac computers and the IQR for PC computers? What does this mean?

10 The number of points per game for two basketball players over a season is summarised in these box plots.

a Which player has the highest maximum?
b Which player has the highest median?
c Which player has the smallest IQR?
d Which player is a more consistent basketball scorer? Give reasons.
e Which player most likely scored the greatest number of points? Give reasons.

11 Give an example of a small data set that has the following.
a Maximum = upperquartile
b Median = lowerquartile
12 Does the median always sit exactly in the middle of a box on a box plot? Explain.
13 Could the mean of a data set be greater than Q_{3} ? Explain.

14 Outliers on box plots are shown as a separate point.

The life in months of a particular kind of battery used in a special type of high-powered calculator is shown in this data set.
$\begin{array}{llllllllllll}3 & 3 & 3 & 4 & 4 & 5 & 6 & 7 & 8 & 8 & 9 & 17\end{array}$
a Use all the values to calculate Q_{1}, Q_{2} and Q_{3} for the data set.
b Do any of the values appear to be outliers?
c Not including the outlier, what is the highest value?
d Draw a box plot for the data using a cross (\times) to show the outlier.
e Can you give a logical reason for the outlier?

Lesson 7

6 The median of the data in this stem-and-leaf plot is:
A 74
B 71
C 86
D 65
E 70

Stem	Leaf
5	358
6	147
7	02479
8	266
$7 \mid 4$ means 74	

7 If Jacob achieved scores of 12, 9, 7 and 12 on his last four language vocabulary tests, what score must he get on the fifth test to have a mean of 11 ?
A 16
B 14
D 13
E 15

8 This frequency histogram shows the times of finishers in a fun run. The percentage of competitors that finished in better than 40 minutes was:
A 55\%
B 85\%
D 62.5\%
E 60\%
C 50%

9 The interquartile range of the set of ordered data below is:

1.1	2.3	2.4	2.8	3.1	3.4	3.6	3.8	3.8	4.1	4.5	4.7

A 2-5
B 1.7
C 3.8
D 1.3
E 2.1

10 Choose the incorrect statement about the box plot below.

A The range is 36 .
B Fifty per cent of values are between 36 and 51 .
C The median is 42 .
D Twenty-five per cent of values are below 36 .
E The interquartile range is 20 .

